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ABSTRACT

Pectoral muscle (PM) segmentation is an important step

for improving the accuracy and efficiency of breast cancer

screening in digital mammography. In recent years, image-

to-image (I2I) deep learning (DL) methods have achieved

state-of-the-art performance for automated PM segmentation

by representing the PM region as a binary mask. This paper

introduces a new curve regression approach by represent-

ing the PM boundary as a vector of connected points that

lie on the curve separating the PM from surrounding breast

tissue. This low-dimensional PM representation is used to

introduce a concept of knowledge distillation (KD), which

exploits an ensemble of teachers to perform loss weighting

based on maximum likelihood (ML) estimation. Experiments

with in-house mammography data show that DL based curve

regression outperforms a reference I2I DL method (U-net)

for PM segmentation. Further, application of the proposed

KD concept achieves higher segmentation accuracy with only

16% of parameters and 23% of inference time compared to

the U-net.

Index Terms— Knowledge distillation, pectoral muscle

segmentation, teacher-student, semi-supervised learning

1. INTRODUCTION

Breast cancer is one of the most common causes of death re-

lated to cancer [1]. As a countermeasure, digital breast mam-

mography has been established as a reliable, cost effective

imaging technique with extensive use in breast cancer screen-

ing, diagnostics, and follow up. One important and challeng-

ing step in mammography image analysis is Pectoral mus-

cle (PM) segmentation. As an example, not excluding the

PM region from quantification algorithms may lead to inac-

curate characterization of the breast tissue [2]. Furthermore,

multi-view and longitudinal alignment of mammograms also

benefit from the PM as an important anatomical landmark.

Therefore, there is a strong motivation to provide technical

solutions for the task of PM segmentation. However, PM

segmentation in mammography images remains challenging

due to the significant variability in its shape and appearance.

Moreover, differences in positioning of the breast during im-

age acquisition, blurred edges due to similarity with surround-

ing glandular tissue in terms of morphology and appearance,

and visual obstruction due to an overlap with dense glandular

tissue or skin folds constitute further challenges.

A number of different approaches have been proposed

for PM segmentation in mammograms. Earlier methods re-

lied on assumptions about the shape of the PM boundary

and employed a straight line initialization like [3], followed

by refinement using active contours [4] or polynomial fit-

ting [5]. Further advancements included intensity-based

filtering and region growing methods as reviewed in [6]. The

above methods depend on handcrafted features, which limits

their performance for the PM segmentation task. Advances

in deep learning (DL), specifically deep convolutional neural

networks (DCNN), have offered new possibilities to over-

come these limitations. DCNN architectures specifically tai-

lored for PM segmentation, such as modified versions of the

Holistically-nested Edge Detection network [7], VGG16 [8],

and U-net [2, 9] are able to learn mid- to high-level features

directly from the mammogram, and further employ exten-

sive post-processing like curve interpolation [7], scanline

filling [9], or shortest path computation [8] to improve PM

segmentation performance.

The methods mentioned above can be categorized to the

class of supervised DL that requires large scale expert an-

notations. Semi-supervised DL provides a practical way of

training neural networks by utilizing unlabelled data and

has found various applications in medical image segmen-

tation [10]. For instance, model compression techniques

transfer information from larger to smaller models to achieve

high accuracy with low footprint and fast execution time,

which is especially appealing for clinical workflow integra-

tion [11]. In this context, Knowledge distillation (KD) [12]

has emerged as a popular technique for transferring knowl-

edge from a large (teacher) network to a small (student)

network. While the teacher network is trained in a supervised



manner, semi-supervised techniques may be used for distilla-

tion of knowledge to the student network [13, 14]. Medical

image segmentation has benefited from these techniques as

well (e.g. [15, 16]), especially because of the costs associated

with labeling large-scale datasets by clinical experts.

In this paper, we present a new approach for PM segmen-

tation by explicitly incorporating prior anatomical knowledge

into the neural network design. More specifically, the bound-

ary separating the PM from the breast tissue is represented by

the column-index (CI) vector, which is defined to as a sorted

vector of contiguous, row-wise column indices of the PM

boundary in the mammography image. This low-dimensional

representation of an image region is the basis for introducing

a new KD concept, where a collection of CI vector propos-

als estimated by an ensemble of teachers is used to train a

student based on a weighted loss derived by maximum likeli-

hood (ML) estimation. This concept penalizes training gradi-

ent for examples with higher teacher disagreement, and is es-

pecially appealing for semi-supervised learning using a large

unlabeled dataset.

2. METHODOLOGY

This paper exploits anatomical information about the conti-

nuity of the PM boundary to simplify the PM segmentation

task. This is achieved by representing the PM boundary as

a CI vector, which reformulates the region segmentation pro-

posed in previous work into a new vector regression task. The

CI vector definition and a corresponding supervised DL based

regression method is described in Subsection 2.1. As this low-

dimensional representation is well-suited for semi-supervised

learning, we introduce a teacher-student concept for CI vector

regression in Subsection 2.2.

2.1. Supervised CI Vector Regression

Given a 2D image X with R rows and C columns, along with

the corresponding boundary mask (BM) (Figure 1), we define

an ordered vector containing the CI of the PM boundary for

every row in the image:

z = [z1, ..., zR], where zi ∈ [1, C], ∀i ∈ [1, R]. (1)

The entries zi of the CI vector z are defined as:

zi =

{

c if BMi,c = 1 and
∑R

i=1
BMi,c = 1

C otherwise,

(2)

where BMi,c denotes the entry at the i-th row and c-th col-

umn of the BM matrix

BM = X− (X⊖ SE) with

SE = [[0, 1, 0], [1, 1, 1], [0, 1, 0]].
(3)

Here ⊖ describes the binary erosion operator [17].
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Fig. 1. Schematic overview of representing the PM obtained

from expert annotations as a binary region mask, a BM ob-

tained by performing morphological operations on the region

mask, or using the proposed CI vector z.

Representation of the PM boundary using the CI vector

reformulates the PM segmentation as a low-dimensional vec-

tor regression task. Existing DL architectures can be adapted

for this task by ensuring that the size of the final output layer

is equal to R and predictions are in the range [1, C]. Further,

a known regression loss function can be used to train the net-

work. Specifics of supervised CI vector regression training

employed for this work are provided in Section 3.

2.2. Semi-supervised CI Vector Regression

The CI vector provides a low-dimensional representation of

the PM region and is well-suited for distilling knowledge,

e.g., from an ensemble of teachers to a student network, as

described in the paragraphs below. Please note that alterna-

tive KD concepts similar to those described in [18] may be

adapted to work with the CI vector representation as well.
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Fig. 2. Schematic overview of applying teacher-student learn-

ing to CI vector regression.

As depicted in Figure 2, we consider an ensemble of

teachers to produce N proposals zn (n = 1, ..., N ) of the

latent CI vector z. Furthermore, a student network trans-

forms the current input image X to the student output vec-

tor fW(X), which depends on the nonlinear function f(·)
and the trainable parameters W. The student output vec-



tor fW(X) in Figure 2 is modeled to follow a multivariate

Gaussian distribution

p(fW(X)) =
1

(2π)R/2

1

det{Ĉz}
·

exp

{

−
1

2

(

fW(X)− µ̂
z

)T
Ĉ

−1

z

(

fW(X)− µ̂
z

)

} (4)

where det{·} represents the determinant of a matrix and (·)T

denotes the transpose of a vector. The mean vector µ̂z and

covariance matrix Ĉz in (4) are estimated from the teacher

proposals zn according to:

µ̂z =
1

N

N
∑

n=1

zn, Ĉz =
1

N − 1

N
∑

n=1

(zn − µ̂z)(zn − µ̂z)
T

(5)

Based on the probabilistic model defined by (4) and (5),

ML estimation of model parameters W reveals:

−log (p(fW(X)) ∝

1

2

(

fW(X)− µ̂z

)T
Ĉ

−1

z

(

fW(X)− µ̂z

)

.
(6)

Here the deviation between student output vector fW(X) and

teacher mean vector µ̂
z

is weighted by the inverse covariance

matrix Ĉ
−1

z
. As a consequence, rows with a smaller teacher

agreement are penalized and their contribution to the overall

gradient is diminished during training. This is especially ap-

pealing for semi-supervised learning using a large unlabeled

dataset, as shown in Section 3.

3. EXPERIMENTS AND RESULTS

This section details experiments designed to evaluate the pro-

posed CI regression approach for PM segmentation in a super-

vised (Subsection 3.1) and semi-supervised (Subsection 3.2)

manner. For all experiments we used PyTorch [19] as training

library with a maximum number of 150 epochs.

Image preprocessing. For all experiments, image pre-

processing was realized by extracting the image content from

the DICOM file, performing resizing to an image dimension

of 256 × 256 (bilinear interpolation, zero padding) and sub-

sequently normalizing the pixel values into the range [0, 1].
Labeled data. We exploit 8k mediolateral oblique

(MLO) mammograms (both left and right laterality) acquired

by Anonymous Product from 4 different clinics1. Ground

truth segmentation was provided by clinical experts in the

form of binary masks. From this labeled dataset, we extracted

16% for independent testing by keeping patient boundaries.

It is important to mention that this testing data was con-

sistently used throughout this section to report comparable

performance metrics for different approaches.

1DICOM images were exported based on clinical collaboration and fol-

lowing all required local regulations and the general data protection regula-

tion (GDPR) of the European Union. Additional ethical approval was not

required.

3.1. Supervised learning

As mentioned in the description above (see Labeled data) we

used 84% of the labeled dataset for network training. These

6720 images were split into 80% for optimizing neural net-

work parameters and 20% for validation.

Reference Method.: U-Net [20] is a state-of-the-art neu-

ral network architecture for image-to-image (I2I) translation.

In this paper, we adapted the U-Net architecture described

in [2] to predict a binary mask of the PM region from a pre-

processed mammography image.

CI vector regression. The widely-used Densenet-121

[21] architecture was adapted to predict the PM boundary

through CI vector regression. More specifically, the linear

output layer contains 256 entries to account for all 256 rows

in the preprocessed mammography image.

Experimental results. A comprehensive marginal analy-

sis was conducted to individually optimize hyper-parameters

for a fair comparison. The optimizer, loss, and learning rate

scheduler were found to be the most important parameters to

consider.

This led to the choice of the Adam optimizer and a

learning rate scheduler (learning rate=0.001, step size=10,

patience=10) for both CI vector regression and the U-net.

Marginal analysis further informed the choice of the loss

functions as DICE loss and sum-of-absolute error for the

U-net and CI vector regression, respectively.

This marginal analysis was followed by investigating the

PM segmentation accuracy achieved by CI vector regression

(Densenet-121) and binary mask segmentation (U-Net) for

different network sizes. To this end, every training was re-

peated at least four times to account for slight metric fluctu-

ations produced, e.g., by random network initialization. The

results of the average DICE scores illustrated in Figure 3 re-

veal that the proposed CI vector regression outperforms bi-

nary mask segmentation and achieves a high PM segmenta-

tion accuracy even with a very small number of network pa-

rameters. Please note that further increasing the network sizes

as displayed in Figure 3 did not remarkably increase the aver-

age DICE score values.

The superiority of CI vector regression compared to bi-

nary mask segmentation in Figure 3 is highlighted by com-

paring performance metrics in Table 1. To this end, we se-

lected network architectures based on Figure 3 independently

for U-Net and CI regression. The goal of this selection was

to choose a good compromise between the number of param-

eter and the average DICE score accuracy. Inspecting the re-

sults for supervised learning (upper block of Table 1) reveals

that the CI regression with a Densenet-121 of 165k parame-

ters achieves higher PM segmentation accuracy compared to

the U-Net of 483k parameters at only 36% of the inference

time. This is shown by the rightmost column in Table 1 and

was measured relative to the U-Net with 483k parameters on

a Intel(R) Xeon(R) Silver 4116 CPU (2.10 GHz).
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Fig. 3. Average Dice score achieved by CI vector regres-

sion (Densenet-121) and binary mask segmentation (U-Net)

for varying number of network parameters.

Table 1. PM segmentation accuracy and relative inference

time (RI time) for selected model architectures and number of

neural network parameters (# net pars) achieved using Binary

Mask (BM) segmentation (U-Net) and CI vector regression

(Densenet-121).

PM segmentation # net DICE score RI

method pars mean/median time

U-Net for 73k 0.855/0.915 0.56

BM segmentation 117k 0.909/0.950 0.81

(supervised) 483k 0.929/0.958 1.00

Densenet-121 for 79k 0.917/0.962 0.23

CI vector regression 165k 0.935/0.970 0.36

(supervised) 400k 0.945/0.973 0.48

Densenet-121 for 79k 0.944/0.973 0.23

CI vector regression 165k 0.948/0.974 0.36

(semi supervised) 400k 0.950/0.975 0.48

These results confirm that CI vector regression provides

an effective means for fast and accurate supervised PM seg-

mentation using a labeled training dataset.

3.2. Semi-supervised learning

The labeled dataset mentioned above is complemented by 60k
MLO unlabeled mammograms of unique patients extracted

from different hospitals2.

Teacher networks (supervised learning). We trained 6
teacher networks using CI vector regression on the labeled

dataset of 6720 images as described in Subsection 3.1. This

was realized based on 6-fold data splitting and independent

network optimization. Please note that this approach serves as

a proof of concept and that other strategies for teacher training

(e.g., [18] and references therein) could be applied as well.

2DICOM images were exported based on clinical collaboration and fol-

lowing all required local regulations and the general data protection regula-

tion (GDPR) of the European Union. Additional ethical approval was not

required.

Student network (unsupervised learning). The CI vec-

tor regression estimates provided by the teacher ensemble

were used to train the student network based on ML estima-

tion as described in Subsection 2.2. To this end, we re-trained

the Densetnet-121 network architectures of Table 1 as fol-

lows: The unlabeled dataset of 60k MLO mammograms was

used to adjust network parameters, all 6720 images of the

labeled dataset were used for validation. Please note that for

all images an artificial ground truth was consistently provided

by the teacher ensemble.

Experimental results. The lower block of Table 1 shows

that re-training CI vector regression networks on the unla-

beled dataset increases PM segmentation accuracy especially

for small network architectures. To give an example, the

Densenet-121 of 79k parameters outperforms the PM seg-

mentation achieved by the U-Net of 483k parameters by

using only 16% of parameters and 23% of the inference time.

Furthermore, the accuracy drop obtained by reducing the

network size is much smaller by applying knowledge distilla-

tion. Reducing the number of Densetnet-121 parameters from

400k to 79k leads to a drop of DICE scores mean values from

0.950 to 0.944 and 0.945 to 0.917 using semi-supervised and

supervised learning, respectively. These results confirm that

the proposed concept of CI vector regression is well-suited

for creating small and efficient neural networks for the task

of PM segmentation.

4. CONCLUSION

We proposed a contour-based deep learning method which of-

fers an innovative solution to the challenging task of PM seg-

mentation in mammography images. By training a network to

learn the PM boundary by solving a vector regression instead

of I2I segmentation task, we achieved improvements in accu-

racy, efficiency, and inference speed. Further, the proposed

approach lent itself nicely to knowledge distillation, where

we introduced a teacher-student concept based on ML esti-

mation. This novel semi-supervised learning strategy resulted

in a further increase in accuracy especially for small network

architectures. All demonstrated benefits position our method

as a promising and practical solution for accurate and quick

PM segmentation. In future, the proposed strategy could also

be transferred to other applications in medical imaging.

5. COMPLIANCE WITH ETHICAL STANDARDS

Data selection followed all required local regulations and the

general data protection regulation (GDPR) of the European

Union. Additional ethical approval was not required.

6. DISCLAIMER

The presented methods in this paper are not commercially

available and their future availability cannot be guaranteed.
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